Abstract

The paper presents the results of numerical studies of the aerodynamic structure of the flow in a fixed layer of granular adsorbent in the adsorber of a pressure swing adsorption (PSA) unit for synthesis gas separation and hydrogen purification. Сomputational experiments were conducted in COMSOL Multiphysics software using 1-D and 2-D mathematical models to calculate the velocity field in the bulk layer of the 13X adsorbent for the PSA process of hydrogen purification. When assessing the accuracy of calculating the aerodynamic structure of the gas flow in the adsorbent, it was found that the use of a 2-D mathematical model provides an increase in the accuracy of calculations by an average of ~ 1-2% compared with the 1-D model. It is determined that when using an adsorbent with a particle diameter of more than 2 mm in the PSA unit, the use of 2-D and 3-D mathematical models for calculations is promising at speeds of more than 0.3 m/s, due to an increase in the velocity divergence in the center of the vertical cylindrical adsorber and on its walls

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call