Abstract

The main challenge for lithium-oxygen (Li-O2) batteries is their sluggish oxygen evolution reaction (OER) kinetics and high charge overpotentials caused by the poorly conductive discharge products of lithium peroxide (Li2O2). In this contribution, the cesium lead bromide perovskite (CsPbBr3) nanocrystals were first employed as a high-performance cathode for Li-O2 batteries. The battery with a CsPbBr3 cathode can exhibit the lowest charge overpotential of 0.5 V and the best cycling performance of 400 cycles among all the reported perovskite-based Li-O2 cells, which represents a new benchmark. Most importantly, the density functional theory (DFT) calculations further prove that the rate limitation step during OER processes is the decomposition of LiO2 to form O2 and Li+, and the weak adsorption strength between CsPbBr3 surfaces and LiO2 results in a low charge overpotential for the CsPbBr3-based Li-O2 battery. This work first demonstrates the good potential of CsPbBr3 for application in metal-air batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.