Abstract

The results of studies on the production of a porous ceramic-matrix composite material C–N/SiC from silicon carbide and nitrogen-doped nanostructured carbon for subsequent use as supercapacitor electrodes are presented. The material is formed by pressing silicon carbide micropowder (1 µm) and impregnating with a solution of carbamide (nitrogen source) in phenol-formaldehyde varnish (carbon source), curing and pyrolysis in a nitrogen atmosphere. The maximum concentration of carbamide was obtained in the solution (16 wt.%) at 50 ºС with a viscosity of 134.3 mPa⋅s. Thermogravimetric analysis in nitrogen of the cured solution revealed multistage decomposition with a residual mass of C–N of 48 % at 1000 ºС. Studies of the elemental composition showed a nitrogen content of 1.4 wt.% in C–N/SiC composite (up to 7 % of C–N active mass). In the composite structure, the C–N carbon-nitrogen layer (up to 12 wt.%) distributed inside the matrix pores and covering the SiC grains is X-ray amorphous has a complex nanoscale relief with an average pore size of 1.0–1.5 nm. According to electrochemical studies, the specific capacitance of the C–N/SiC material and the C–N active layer is 16.84 and 153.2 F/g respectively, and the equivalent resistance of the test supercapacitor cell with C–N/SiC electrodes is 0.567 Ohm for samples with maximum doping. The electrodes operate according to the sorption-desorption mechanism of charge accumulation and release, which is typical for a classic supercapacitor based on a double electric layer without the presence of redox reactions on the electrodes. The influence of technological regimes of pyrolysis on the electrophysical parameters of the cell is revealed: lower values of the pyrolysis temperature and nitrogen pressure in the chamber lead to an increase of the material specific capacitance and reduction of the cell equivalent resistance. The obtained results demonstrate the possibility of utilizing C–N/SiC material for the manufacture of supercapacitor electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call