Abstract
This paper describes a method of adapting a continuous density HMM recogniser trained on clean cepstral speech data to make it robust to noise. The technique is based on parallel model combination (PMC) in which the parameters of corresponding pairs of speech and noise states are combined to yield a set of compensated parameters. It improves on earlier cepstral mean compensation methods in that it also adapts the variances and as a result can deal with much lower SNRs. The PMC method is evaluated on the NOISEX-92 noise database and shown to work well down to 0 dB SNR and below for both stationary and non-stationary noises. Furthermore, for relatively constant noise conditions, there is no additional computational cost at run-time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.