Abstract
This paper presents a method for online model adaptation based on the parallel model combination (PMC) method. The proposed method makes use of the concept of Gaussian model clustering to reduce the computation load required by PMC. This model clustering, in combination with a set of derived transformation equations, provide a potential framework for online model adaptation in noisy speech recognition. The proposed method reduces the computation in adaptation by about 45% with only a slight degradation in improvements of an average 18% for a connected digit task and 9% for a large vocabulary Mandarin task when compared with standard PMC method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.