Abstract

The parallel model combination (PMC) technique has been very successful and frequently used to improve the performance of a speech recognition system under noisy environments. In this approach it is assumed that the log spectrum of speech signals is Gaussian-distributed, which is not always valid especially when the number of mixtures in the HMMs is few. In this paper, a simple approach is proposed to improve the PMC method by splitting the mixtures before the domain transformation process in the PMC is performed, and merging the mixtures back to the original number after the PMC processes are completed. Preliminary experimental results show that the increased number of mixtures during the PMC processes can in fact provide significant improvements over the original PMC method in terms of the recognition accuracies, especially when the SNR is low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.