Abstract

In this work, central composite design(CCD) and desirability approach of Response surface methodology (RSM) has been used for optimization of biodiesel yield produced from mixture of animal waste fat oil and used cooking oil (AWO) in the ratio of 1:1through alkaline transesterification process. In this work, methanol quantity, reaction time and sodium hydroxide concentration are selected as input parameters and yield selected as response. The combined effect of methanol quantity, reaction time and sodium hydroxide concentration were investigated and optimized by using RSM. The second order model is generated to predict yield as a function of methanol quantity, reaction time and sodium hydroxide concentration. A statistical model predicted the maximum yield of 96.9779% at 35ml methanol quantity (% v/v of oil), 75 min. reaction time and 0.6g (% wt./v of oil) of sodium hydroxide. Experimentally, the maximum yield of 97% was obtained at the above optimized input parameters. The variation of 0.02% was observed between experimental and predicted values. In this work, an attempt has also made to use desirability approach of RSM to optimize the input parameters to predict maximum yield. Desirability approach predicts maximum yield (97.075%) at CH3OH (35.832% vol. /vol. of oil), NaOH (0.604 % wt./vol. of oil) and reaction time (79.054min.) was found for the AWO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.