Abstract

The present investigation deals with process optimisation of delignification of rice straw towards its micro-porous structural enhancement for its utilization in polymer grafting. The individual effect of influential parameters viz. sodium hydroxide concentration (1–12%, w/v), reaction time (30–126 min), and temperature (20–150 °C) on delignification were studied in a single mode batch process. The process parameters were further optimized with Central composite design (CCD) approach of response surface methodology in Design expert software. Delignification of rice straws was observed to follow quadratic equation. Analysis of variance (ANOVA) study suggested the equation to be significant for the process with major impact of sodium hydroxide concentration on the delignification process than reaction time and temperature. The optimized parametric conditions of delignification are: alkali concentration 7.59%, reaction time 75.11 min, and reaction temperature 40 °C. The software predicted lignin extraction concentration to be 72.4 mg/g, which upon experimentation was found to be 70.03 mg/g. Instrumental analysis of the delignified rice straw demonstrated porous structure and change in surface chemistry due to lignin removal. Therefore, the delignified rice straw obtained under optimized conditions were found to be appropriate for grafting of polymers which improved its resilience for variable usages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call