Abstract

In this paper, we study the asymptotic integration problem in the neighborhood of infinity for a certain class of linear functional differential systems. We construct the asymptotics for solutions of the considered systems in the critical case. Using the ideas of the center manifold method, we show the existence of the so-called critical manifold that is positively invariant for trajectories of the initial system. We establish that the asymptotics for solutions of the system on this manifold defines the asymptotics for all solutions of the initial system. In the first part of this work, we propose an algorithm for an approximate construction of the critical manifold. Moreover, we establish the unique solvability for auxiliary algebraic problems that occur within the algorithm implementation.

Highlights

  • Тогда в системе иНекоторые конкретные матрицы, которые, в частности, содержат в себе информацию об определенных ранее матрицах Hj1... js(t, θ) (s < l)

  • Линейный ограниченный оператор, действующий из Ch в Cm и не зависящий от t, а оператор G(t, xt) допускает представление в виде

  • We study the asymptotic integration problem in the neighborhood of infinity for a certain class of linear functional differential systems

Read more

Summary

Тогда в системе и

Некоторые конкретные матрицы, которые, в частности, содержат в себе информацию об определенных ранее матрицах Hj1... js(t, θ) (s < l). (s l) мы можем заключить, что элементы матриц являются тригонометрическими многочленами переменной t

QΛ при всех
Вычислим внутреннюю сумму в правой части этого выражения j ν
Список литературы

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.