Abstract
Weather radar data is susceptible to several artifacts due to anamalous propagation, ground clutter, electronic interference, sun angle, second-trip echoes and biological contaminants such as insects, bats and birds. Several methods of censoring radar reflectivity data have been devised and described in the literature. However, they all rely on analyzing the local texture and vertical profile of reflectivity fields. The local texture of reflectivity fields suffices to remove most artifacts, except for biological echoes. Biological echoes have proved difficult to remove because they can have the same returned power and vertical profile as stratiformrain or snow. In this paper, we describe a soft-computing technique based on clustering, segmentation and a two-stage neural network to censor all non-precipitating artifacts in weather radar reflectivity data. We demonstrate that the technique is capable of discrimination between light snow, stratiformrain and deep biological ”bloom”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.