Abstract
In this study, the Weather Research and Forecasting (WRF) model is used to simulate a severe convective process in Hainan, China on September 16, 2019. For the purpose of improving precipitation simulation and forecast, the WRF model’s three-dimensional Variational (3DVAR) assimilation system is used to assimilate CINRAD/SA Weather radar data. The assimilation results and precipitation forecast are compared and analyzed in order to study the influence of weather radar data assimilation on precipitation prediction. Four experiments of assimilation are carried out: 1) Control experiment: no assimilation of any data; 2) Only radar reflectivity data is assimilated; 3) Assimilating the radar radial velocity data; 4) Simultaneously assimilating the radar reflectivity and radial velocity data. The results show that the assimilation of the reflectivity data from the weather radar can effectively adjust the spatial distribution and magnitude of water vapor and temperature field in the background field. Assimilating the radar radial velocity data mainly improves the wind field of initial field. The assimilation of reflectivity can better adjust the precipitation forecast compared with the assimilation of radial velocity. Assimilating both reflectivity and radial velocity at the same time shows the best positive effect on precipitation forecast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.