Abstract

Anaerobic digestion provides a solution to the inefficient use of carbon resources caused by improper disposal of corn stover-based ethanol stillage (CES). In this regard, we developed a single-chamber anaerobic digestion integrated microbial electrolysis cells system (AD-MEC) to convert CES into biogas while simultaneously upgrading biogas in-situ by employing voltages ranging from 0 to 2.5 V. Our results demonstrated that applying 1.0 V increased the CH4 yield by 55 % and upgraded the CH4 content in-situ to 82 %. This voltage also promoted the well-formed biofilm on the electrodes, resulting in a 20-fold increase in current. However, inhibition was observed at high voltages (1.5–2.5 V), suppressing syntrophic organic acid-oxidizing bacteria (SOB). The dissociation between SOB and methanogens led to accumulation of propionic and butyric acid, which, in turn, inhibited methanogens. The degradation of CES was accelerated by unclassified_o_norank_c_Desulfuromonadia on the anode, likely leading to an increase in mixotrophic methanogenesis due to the synergistic interaction among Aminobacterium, Sedimentibacter, and Methanosarcina. Furthermore, the enrichment of electroactive bacteria (EB) such as Enterococcus and Desulfomicrobium likely facilitates direct interspecies electron transfer to Methanobacterium, thereby promoting the conversion of CO2 to CH4 through hydrogenotrophic methanogenesis. Rather than initially stimulating the EB in the bulk solution to accelerate the start-up process of AD, our study revealed that applying mild voltage up to 1.0 V tended to mitigate the negative impact on the original microorganisms, as it gradually enriched EB on the electrode, thereby enhancing biogas production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.