Abstract
The practical applications of waterborne epoxy coatings are limited due to their poor barrier properties caused by the formation of numerous micropores and defects during the curing process. Herein, cellulose nanocrystals (CNCs)-reinforced waterborne epoxy coatings were fabricated by the direct addition of 0.2–1.0 wt% CNCs to waterborne epoxy emulsion followed by amine curing agent addition and spray coating. The incorporation of 0.2–0.5 wt% CNCs had no discernible impact on the stability of the waterborne epoxy emulsion. This led to the uniform dispersion of CNCs in the cured coating matrix, as evidenced by differential scanning calorimetry analysis. Because of the good compatibility, 0.2–0.5 wt% CNCs-reinforced epoxy coatings exhibited superior corrosion protection performance for steels. The impedance modulus of these coatings remained at 108 Ω cm2 after being immersed in a 3.5 wt% NaCl solution for 21 d. The hydroxyl groups present on the CNC surface undergo a reaction with the epoxy group, enhancing intermolecular interaction and leading to the formation of a defect-free dense structure that improves coating barrier properties. However, the incorporation of an excessive amount of CNCs (i.e., 0.8 and 1.0 wt%) significantly compromised the corrosion resistance of epoxy coatings due to aggregation-induced coating defects. Overall, this study provides a facile and green strategy for corrosion resistance improvement of waterborne epoxy coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International journal of biological macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.