Abstract

Here we discuss the use of the Cellular Monte Carlo (CMC) method for full band simulation of semiconductor transport and device modeling. The electronic band structure and phonon spectra are used as direct inputs to the program for both cubic, hexagonal, and strained crystal structures using both empirical and ab initio methods. As a particular example, this method is applied to study high field transport in GaN and GaN/AlGaN heterostructures, where good agreement is obtained between the simulated results, and experimental pulse I-V measurements of transport. For device simulation, the CMC algorithm is coupled to an efficient 2D/3D multi-grid Poisson solver. We discuss the application of this algorithm to several technological problems of interest, including ultra-short channel Si/Ge MOSFETs, III-V compound HEMTs, and AlGaN/GaN HEMTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.