Abstract
TeraFET arrays operating in plasmonic regimes could support the transition from 5G to 6G communication if the constituent TeraFETs operate in synchrony. Such arrays are plasmonic crystals supporting Bloch-like waves of electron density oscillations. The key issues are breaking symmetry and maintaining appropriate boundary conditions between the unit cells. The symmetry must be broken to choose the response polarity to detect the direction of the plasmonic instability growth for generating THz oscillations. The coherence of plasma waves propagating in individual cells of the plasmonic crystal results in continuous waves in the entire structure. Using the narrow stripes at the unit cell edges (called plasmonic stubs) could maintain such coherence. Another advantage of TeraFET arrays is the reduced effects of parasitic contact resistance. This advantage is even more pronounced in ring plasmonic structures used for converting THz radiation into a magnetic field (giant inverse Faraday effect).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have