Abstract
During epiboly stages the cells (called deep blastomeres) which will form the definitive embryo disperse over the surface of the yolk sphere, only later aggregating and developing an embryonic axis. Five different statistical tests were used to study the pattern formed by the deep blastomeres during epiboly and early dispersed stages. The two most reliable tests, based on the distance from each deep blastomere within a selected area to its nearest neighboring cell, indicate that the distribution pattern changes from regular during epiboly stages to random during dispersed stages 1 and 2. Careful observation and time-lapse microphotography revealed some aspects of how the cells set up the regular pattern. The deep blastomeres exhibit a variety of cell extensions, with which they often contact one another. When two deep blastomeres make contact during epiboly stages, they soon break the contact and move apart; they overlap one another only rarely. Deep blastomeres are frequently located at, and are even elongated along, borders of the overlying flat cells (enveloping layer cells). These two mechanisms, one similar to contact inhibition of cell movement, the other to contact guidance, may contribute to the rather regular spacing of the deep blastomeres as well as to their arrangement in rows during epiboly stages.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have