Abstract
We examined the population genetic structure of American alligators (Alligator mississippiensis) sampled from 12 localities across the southeastern United States. The primary goal of this study was to determine the extent of population differentiation among alligators from four Florida lakes using eight microsatellite loci and compare the results to additional sites located at varying distances from them. Analyses of population structure revealed little differentiation (F(ST)=0.039; Rho=0.012) among the four Florida lakes, Apopka, Griffin, Orange and Woodruff, which are all located in the St. John&'s River watershed in north-central Florida. Further, there was little differentiation among these samples and samples collected from the Everglades National Park (F(ST)=0.044; Rho=0.009) and south Georgia (F(ST)=0.045; Rho=0.032). Therefore, these six samples were pooled together as a "FL/sGA group." Similarly, samples collected in the western extent of the range, Anahuac National Wildlife Refuge in Texas and Salvador Wildlife Management Area, Marsh Island Wildlife Refuge and Rockefeller Wildlife Refuge in Louisiana, also lacked population structure (F(ST)=0.024; R(ST)=0.040). These four populations were pooled into the "TX/LA group." Comparisons of these two groups with samples taken from the Santee Coastal Reserve in South Carolina and Mobile, Alabama yielded three to four times more differentiation among groups (F(ST)=0.131; Rho=0.187). These and other analyses support the hypothesis of an east-west phylogeographic split in American alligator populations and are consistent with studies of many freshwater fish and aquatic and terrestrial turtles distributed throughout this same geographic region.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.