Abstract

Exponentially growing yeast cultures separated into discrete periods of the cell cycle by zonal rotor centrifugation show cyclic variation in both UV and nitrous acid induced cell lethality, mitotic gene conversion and mitotic crossing-over. Maximum cell survival after UV treatment was observed in the S and G2 phases of the cell cycle at a time when UV induction of both types of mitotic recombination was at a minimum. In contrast, cell inactivation by the chemical mutagen nitrous acid showed a single discrete period of sensitivity which occurred in S phase cells which are undergoing DNA synthesis. Mitotic gene conversion and mitotic crossing-over were induced by nitrous acid in cells at all stages of the cell cycle with a peak of induction of both events occurring at the time of maximum cell lethality. The lack of correlation observed between maximum cell and the maximum induction of mitotic intragenic recombination suggest that other DNA-repair mechanisms besides DNA-recombination repair are involved in the recovery of inactivated yeast cells during the cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call