Abstract

BackgroundSecond messengers, c-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria, influencing cellular processes such as biofilm formation, transcription, virulence, quorum sensing, and proliferation. While c-di-GMP and (p)ppGpp are both synthesized from GTP molecules, they play antagonistic roles in regulating the cell cycle. In C. crescentus, c-di-GMP works as a major regulator of pole morphogenesis and cell development. It inhibits cell motility and promotes S-phase entry by inhibiting the activity of the master regulator, CtrA. Intracellular (p)ppGpp accumulates under starvation, which helps bacteria to survive under stressful conditions through regulating nucleotide levels and halting proliferation. (p)ppGpp responds to nitrogen levels through RelA-SpoT homolog enzymes, detecting glutamine concentration using a nitrogen phosphotransferase system (PTS Ntr). This work relates the guanine nucleotide-based second messenger regulatory network with the bacterial PTS Ntr system and investigates how bacteria respond to nutrient availability.ResultsWe propose a mathematical model for the dynamics of c-di-GMP and (p)ppGpp in C. crescentus and analyze how the guanine nucleotide-based second messenger system responds to certain environmental changes communicated through the PTS Ntr system. Our mathematical model consists of seven ODEs describing the dynamics of nucleotides and PTS Ntr enzymes. Our simulations are consistent with experimental observations and suggest, among other predictions, that SpoT can effectively decrease c-di-GMP levels in response to nitrogen starvation just as well as it increases (p)ppGpp levels. Thus, the activity of SpoT (or its homologues in other bacterial species) can likely influence the cell cycle by influencing both c-di-GMP and (p)ppGpp.ConclusionsIn this work, we integrate current knowledge and experimental observations from the literature to formulate a novel mathematical model. We analyze the model and demonstrate how the PTS Ntr system influences (p)ppGpp, c-di-GMP, GMP and GTP concentrations. While this model does not consider all aspects of PTS Ntr signaling, such as cross-talk with the carbon PTS system, here we present our first effort to develop a model of nutrient signaling in C. crescentus.

Highlights

  • Second messengers, c-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria, influencing cellular processes such as biofilm formation, transcription, virulence, quorum sensing, and proliferation

  • Our model suggests that C. crescentus recovers quite quickly to normal cell cycle oscillations when we reset glutamine to the starting value

  • Conclusions and future work Our mathematical model of guanine nucleotide-based second messenger network in C. crescentus (Fig. 5) agrees with experimental observations compiled from the literature

Read more

Summary

Introduction

C-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria, influencing cellular processes such as biofilm formation, transcription, virulence, quorum sensing, and proliferation. While c-di-GMP and (p)ppGpp are both synthesized from GTP molecules, they play antagonistic roles in regulating the cell cycle. In C. crescentus, c-di-GMP works as a major regulator of pole morphogenesis and cell development. It inhibits cell motility and promotes S-phase entry by inhibiting the activity of the master regulator, CtrA. Since asymmetric cell division plays an essential role in survival for C. crescentus, understanding how the asymmetry is regulated provides insight into the life cycle of many bacteria with similar characteristics. CtrA, a master regulator of the C. crescentus life cycle, regulates more than 100 genes involved in flagellum biogenesis, DNA replication, and cell division [4, 5]. There are two pathways to inactivate CtrA: proteolysis by ClpXP [6] and dephosphorylation by CckA [7]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.