Abstract

The regulatory circuits dictating CD8+ T cell responsiveness versus exhaustion during anti-tumor immunity are incompletely understood. Here we report that tumor-infiltrating antigen-specific PD-1+ TCF-1− CD8+ T cells express the immunosuppressive cytokine Fgl2. Conditional deletion of Fgl2 specifically in mouse antigen-specific CD8+ T cells prolongs CD8+ T cell persistence, suppresses phenotypic and transcriptomic signatures of T cell exhaustion, and improves control of the tumor. In a mouse model of chronic viral infection, PD-1+ CD8+ T cell-derived Fgl2 also negatively regulates virus-specific T cell responses. In humans, CD8+ T cell-derived Fgl2 is associated with poorer survival in patients with melanoma. Mechanistically, the dampened responsiveness of WT Fgl2-expressing CD8+ T cells, when compared to Fgl2-deficient CD8+ T cells, is underpinned by the cell-intrinsic interaction of Fgl2 with CD8+ T cell-expressed FcγRIIB and concomitant caspase 3/7-mediated apoptosis. Our results thus illuminate a cell-autonomous regulatory axis by which PD-1+ CD8+ T cells both express the receptor and secrete its ligand in order to mediate suppression of anti-tumor and anti-viral immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.