Abstract

In this study, the crystalline structure and particle shape of Cd1-xMnxS (x~0.3) in the composite photocatalysts prepared by hydrothermal synthesis at different temperatures (T = 80, 100, 120, and 140 °C) were analyzed. Along with mixed Cd-Mn sulfide, the catalysts contain a small amount of β-Mn3O4. XRD patterns of (Cd,Mn)S have features inherent to both cubic zinc blende and hexagonal wurtzite structure. Moreover, XRD peaks are anisotropically broadened. First, the heterogeneous (or two-phased) model was considered by the commonly used Rietveld method. Phase ratio, average crystallite sizes, and strains for both phases were formally determined. However, it was shown that this model is not correct because relatively narrow and broad peaks cannot be fitted simultaneously. Then, the homogeneous model was tested by Debye Function Analysis. This model assumes that particles are statistically homogeneous, but each particle contains lamellar intergrowth of zinc blende and wurtzite modifications. The probability of stacking faults, as well as the average radii of spherical and ellipsoidal particles, were varied. It was shown that nanocrystalline Cd0.7Mn0.3S particles have an ellipsoidal shape. Ellipsoids are elongated along the direction normal to the plane of defects. An increase in the hydrothermal synthesis temperature from 80 °C to 140 °C leads to an enlargement of particles and a gradual decrease in the probability of stacking faults in the wurtzite structure from 0.47 to 0.36. Therefore, with increasing temperature, the structure of (Cd,Mn)S nanoparticles transforms from almost random polytype cubic/hexagonal (ZB:WZ = 47:53) to a preferably hexagonal structure (ZB:WZ = 36:64). Mn2+ ions facilitate CdS phase transformation from zinc blende to wurtzite structure. There is no direct correlation between the structure and photocatalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.