Abstract

We demonstrate a cavity-based solution to scale up experiments with ultracold atoms in optical lattices by an order of magnitude over state-of-the-art free space lattices. Our two-dimensional optical lattices are created by power enhancement cavities with large mode waists of 489(8) $\mu$m and allow us to trap ultracold strontium atoms at a lattice depth of 60 $\mu$K by using only 80 mW of input light per cavity axis. We characterize these lattices using high-resolution clock spectroscopy and resolve carrier transitions between different vibrational levels. With these spectral features, we locally measure the lattice potential envelope and the sample temperature with a spatial resolution limited only by the optical resolution of the imaging system. The measured ground-band and trap lifetimes are 18(3) s and 59(2) s, respectively, and the lattice frequency (depth) is long-term stable on the MHz (0.1\%) level. Our results show that large, deep, and stable two-dimensional cavity-enhanced lattices can be created at any wavelength and can be used to scale up neutral-atom-based quantum simulators, quantum computers, sensors, and optical lattice clocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call