Abstract
Andreev (or superconducting) spin qubits (ASQs) have recently emerged as a promising qubit platform that combines superconducting circuits with semiconductor spin degrees of freedom. While recent experiments have successfully coupled two ASQs, how to realize a scalable architecture for extending this coupling to multiple distant qubits remains an open question. In this work, we resolve this challenge by introducing an architecture that achieves all-to-all connectivity between multiple remote ASQs. Our approach enables selective connectivity between any qubit pair while keeping all other qubit pairs uncoupled. Furthermore, we demonstrate the feasibility of efficient readout using circuit quantum electrodynamics techniques and compare different readout configurations. Our architecture shows promise both for gate-based quantum computing and for analog quantum simulation applications by offering higher qubit connectivity than alternative solid-state platforms. Published by the American Physical Society 2025
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have