Abstract

In aluminium reduction cells, an electrochemical reaction occurs between the molten electrolyte film below the aluminium pad and the carbon cathode blocks, leading to the formation of an Al4C3 layer on the cathode blocks. The properties and role of this Al4C3 layer are therefore important for the aluminium production industry, as they could help increase the life expectancy of electrolysis cells and impact the resistive voltage losses. The purpose of this study is to gain a better understanding of the formation, growth and mechanical stability of the aluminium carbide layer formed on top of the cathode block. A reliable scenario describing both the mechanical and electrochemical behaviours of the Al4C3 layer is proposed. For different industrial graphitized cathode grades, a series of experiments were carried out in a bench-scale Hall-Heroult electrolysis cell and the Al4C3 layer formed on top of the cathode was characterized. Thereafter, the CALPHAD method was combined with density functional theory simulations to estimate the electrical and physical properties of Al4C3 together with the phase equilibria occurring at the interface between the carbide layer and the aluminium pad and the cathode blocks respectively. From these calculations, a scenario for carbide layer growth and mechanical stability was established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call