Abstract
Background: Recently, there are clinical reports on the potential of Catha edulis (khat) to induce muscular toxicity. C. edulis (khat) is an evergreen shrub and a well-known controversial plant due to the content of natural stimulant, cathine and cathinone. Objective: The main objective of the study is to evaluate the possible effect of C. edulis leaves extract to induce rhabdomyolysis in vivo. Materials and Methods: Sprague Dawley rats were grouped and treated with khat extract at two different doses (250 and 500 mg/kg), while atorvastatin was used as positive control for 28 days. Body weight was measured throughout the study period. Overnight urine was collected from each rat at the 28th day for myoglobin (Myo) analysis. Terminal blood samples were collected from sacrificed animals for the measurement of serum biomarkers and clinical chemistry. The standard clinical pathology assays aspartate aminotransferase (AST), alanine aminotransferase (ALT), and serum creatinine (CR) were monitored. Skeletal muscle, cardiac muscle, and kidney were collected for histopathological examination. Results: Animals received 250 mg/kg khat extract had shown mild-to-no gait disorders, while at higher dose extract (500 mg/kg) had reduced the body weight of rats with marked increase of gait disorders compared to control. CR, AST, and ALT were elevated in high-dose administration and in rats received ethanol. The tested biomarkers such as heart-type fatty acid-binding protein (HFABP) 3, Troponin I Type 1 slow skeletal (TNNI1), and Myo were significantly increased in khat high dose and statin treatment, but not in low-dose extract and alcohol. The increase in HFABP and TNN1 results were well reflected in histopathological findings of skeletal myofiber degeneration and in the hemorrhages and pyknosis of nucleus observed in the cardiac muscle. Conclusion: These results provide evidence that khat chewing contributes to the development of muscle toxicity and probable rhabdomyolysis. The current subject thus warrants detailed studies which could emphasize on the cardiac complications and muscular toxicity mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have