Abstract
By classical results of Dedekind and Zermelo, second order logic imposes categoricity features on Peano Arithmetic and Zermelo-Fraenkel set theory. However, we have known since Skolem’s anti-categoricity theorems that the first order formulations of Peano Arithmetic and Zermelo- Fraenkel set theory (i.e., PA and ZF) are not categorical. Here we investigate various categoricity-like properties (including tightness, solidity, and internal categoricity) that are exhibited by a distinguished class of first order theories that include PA and ZF, with the aim of understanding what is special about canonical foundational first order theories.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have