Abstract

AbstractIt has long been known that (classical) Peano arithmetic is, in some strong sense, “equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including choice) in which the axiom of infinity is replaced by its negation. The intended model of the latter is the set of hereditarily finite sets. The connection between the theories is so tight that they may be taken as notational variants of each other. Our purpose here is to develop and establish a constructive version of this. We present an intuitionistic theory of the hereditarily finite sets, and show that it is definitionally equivalent to Heyting Arithmetic , in a sense to be made precise. Our main target theory, the intuitionistic small set theory is remarkably simple, and intuitive. It has just one non-logical primitive, for membership, and three straightforward axioms plus one axiom scheme. We locate our theory within intuitionistic mathematics generally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.