Abstract

Liquid-liquid phase separation (LLPS) in living cells provides innovative pathways for synthetic compartmentalized catalytic systems. While LLPS has been explored for enhancing enzyme catalysis, its potential application to catalytic peptides remains unexplored. Here, we demonstrate the use of coacervation, a key LLPS feature, to constrain the conformational flexibility of catalytic peptides, resulting in structured domains that enhance peptide catalysis. Using the flexible catalytic peptide P7 as a model, we induce reversible biomolecular coacervates with structured peptide domains proficient in hydrolyzing phosphate ester molecules and selectively sequestering phosphorylated proteins. Remarkably, these coacervate-based microreactors exhibit a 15,000-fold increase in catalytic efficiency compared to soluble peptides. Our findings highlight the potential of a single peptide to induce coacervate formation, selectively recruit substrates, and mediate catalysis, enabling a simple design for low-complexity, single peptide-based compartments with broad implications. Moreover, LLPS emerges as a fundamental mechanism in the evolution of chemical functions, effectively managing conformational heterogeneity in short peptides and providing valuable insights into the evolution of enzyme activity and catalysis in prebiotic chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.