Abstract

Liquid–liquid phase separation (LLPS) is now recognized as a common mechanism underlying regulation of enzyme activity in cells. Insights from studies in cells are complemented by in vitro studies aimed at developing a better understanding of mechanisms underlying such control. These mechanisms are often based on the influence of LLPS on the physicochemical properties of the enzyme's environment. Biochemical mechanisms underlying such regulation include the potential for concentrating reactants together, tuning reaction rates, and controlling competing metabolic pathways. LLPS is thus a powerful tool with extensive utilities at the cell's disposal, e.g. for consolidating cell survival under stress or rerouting metabolic pathways in response to the energy state of the cell. Here, we examin the evidence for how LLPS affects enzyme catalysis and begin to understand emerging concepts and expand our understanding of enzyme catalysis in living cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.