Abstract

HFC-134a refrigerants are commonly used in air-conditioners and refrigerators. HFC-134a has a GWP 1,430 times higher than that of CO2 and contributes significantly to climate change. Therefore, research has been conducted to eliminate HFC-134a via catalytic decomposition. The catalytic decomposition of HFC-134a with the addition of CH4 over metal oxide (CaO, MgO, and Al2O3) and phosphate catalysts (Ca2P2O7, Mg2P2O7, and AlPO4) is described herein. The prepared catalysts were characterized by NH3-TPD, TGA, and BET analysis. Metal phosphate catalysts exhibited higher HF resistance than metal oxide catalysts. XRD, XRF, and SEM-EDS confirmed the superior resistance of metal phosphates to corrosive hydrogen fluoride (HF). VDF (C2H2F2) is a valuable feed product that can be polymerized into polyvinylidene fluoride (PVDF). In addition, the VDF yield increased with CH4 addition during the HFC-134a decomposition reaction. The CaP-calcium phosphate-catalysts exhibited an efficiency of more than 80 % and the highest VDF yield of 28.8 % after 10 h at 900 °C, 1 bar, and HFC-134a:CH4:N2 = 1:2:17 and RT = 1.0. The introduced CH4 feed acts as a CH3 donor during the decomposition of HFC-134a. Consequently, a comprehensive mechanism of VDF synthesis was proposed by comparing the presence of CH4 feed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.