Abstract
Aggregation is a crucial factor in bacterial biofilm formation, and comprehending its properties is vital for managing waterborne antibiotic-resistant bacteria. In this study, we examined Methicillin-resistant Staphylococcus aureus (MRSA) cell aggregation under varying conditions and assessed the inactivation efficiency of a novel disinfection method, micro-nano bubbles plasma-activated water via ultrasonic stirring cavitation (MPAW-US), on aggregated MRSA cells. Aggregation efficiency increased over time and at low salt concentrations but diminished at higher concentrations. Elevated MRSA cell aggregation in actual water samples represented significant real-life biohazard risks. Unlike conventional disinfection, MPAW-US treatment exhibited minimal change in the inactivation rate constant despite protective outer layers. Enhanced inactivation efficiency results from the synergistic effects of increased intracellular oxidative stress damage and extracellular substance disruption, triggered by ultrasound-activated micro-nano bubbles that improve PAW reactivity and applicability. This approach neither induced MRSA cross-resistance to unfavorable conditions nor increased toxicity or regrowth potential of aggregative MRSA, utilizing ATP levels as potential regrowth capability indicators. Ultimately, this energy-efficient disinfection technology functions effectively across diverse temperature ranges, showcasing exceptional sterilization and nutritional bean sprout production after cyclic filtering, thereby promoting wastewater sustainability amidst carbon emission concerns.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have