Abstract

ABSTRACTMethicillin-resistant Staphylococcus aureus (MRSA) strains are tolerant of conventional antibiotics, making them extremely dangerous. Previous studies have shown the effectiveness of proton motive force (PMF) inhibitors at killing bacterial cells; however, whether these agents can launch a new treatment strategy to eliminate antibiotic-tolerant cells mandates further investigation. Here, using known PMF inhibitors and two different MRSA isolates, we showed that the bactericidal potency of PMF inhibitors seemed to correlate with their ability to disrupt PMF and permeabilize cell membranes. By screening a small chemical library to verify this correlation, we identified a subset of chemicals (including nordihydroguaiaretic acid, gossypol, trifluoperazine, and amitriptyline) that strongly disrupted PMF in MRSA cells by dissipating either the transmembrane electric potential (ΔΨ) or the proton gradient (ΔpH). These drugs robustly permeabilized cell membranes and reduced MRSA cell levels below the limit of detection. Overall, our study further highlights the importance of cellular PMF as a target for designing new bactericidal therapeutics for pathogens.IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) emerged as a major hypervirulent pathogen that causes severe health care-acquired infections. These pathogens can be multidrug-tolerant cells, which can facilitate the recurrence of chronic infections and the emergence of diverse antibiotic-resistant mutants. In this study, we aimed to investigate whether proton motive force (PMF) inhibitors can launch a new treatment strategy to eliminate MRSA cells. Our in-depth analysis showed that PMF inhibitors that strongly dissipate either the transmembrane electric potential or the proton gradient can robustly permeabilize cell membranes and reduce MRSA cell levels below the limit of detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.