Abstract

A reliable battery thermal management system (BTMS) is essential to ensure proper performance, a long life span and high electric vehicle safety. The primary objective of BTMS is to maintain the cells’ temperature in the range of 15–35 °C while limiting the temperature spread between cells to below 5 °C. Active thermal management with polymeric hollow fibers (PHFs) has been reported in a few articles, but its tremendous flexibility is mainly advantageous for cylindrical cells. Extruded polymeric cold plate heat exchangers with rounded rectangle channels (RRCs) are proposed as a more elegant solution for planar batteries. Heat exchangers using PHFs and RRCs were experimentally compared, with a strong focus on minimizing the maximum temperature and temperature spread of the experimental setup while simultaneously achieving minimal pressure drops. The system behavior with different parameters, including materials, geometry and thermophysical properties, was further studied using properly validated CFD models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call