Abstract
In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga,Mn)As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed (Ga,Mn)As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown (Ga,Mn)As under the same excitation condition, which shows that DP mechanism is dominant in the spin relaxation process for (Ga,Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed (Ga,Mn)As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga,Mn)As.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.