Abstract
The aim of this study was to test the hypothesis that in a short-term clinical pilot trial short-pulsed 9.6 μm CO(2)-laser irradiation significantly inhibits demineralization in vivo. Twenty-four subjects scheduled for extraction of bicuspids for orthodontic reasons (age 14.9 ± 2.2 years) were recruited. Orthodontic brackets were placed on bicuspids (Transbond XT, 3M). An area next to the bracket was irradiated with a CO(2)-laser (Pulse System Inc, Los Alamos, New Mexico), wavelength 9.6 μm, pulse duration 20 μs, pulse repetition rate 20 Hz, beam diameter 1100 μm, average fluence 4.1 ± 0.3J∕cm(2), 20 laser pulses per spot. An adjacent nonirradiated area served as control. Bicuspids were extracted after four and twelve weeks, respectively, for a quantitative assessment of demineralization by cross-sectional microhardness testing. For the 4-week arm the mean relative mineral loss ΔZ (vol% × μm) for the laser treated enamel was 402 ± 85 (mean ± SE), while the control showed significantly higher mineral loss (ΔZ 738 ± 131; P = 0.04, t-test). The difference was even larger after twelve weeks (laser arm ΔZ 135 ± 98; control 1067 ± 254; P = 0.002). The laser treatment produced 46% demineralization inhibition for the 4-week and a marked 87% inhibition for the 12-week arm. This study shows, for the first time in vivo, that the short-pulsed 9.6 μm CO(2)-laser irradiation successfully inhibits demineralization of tooth enamel in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.