Abstract

Caries prevention with different lasers has been investigated in laboratory studies and clinical pilot trials. Objective of this in vitro study was to assess whether 9.3-μm microsecond short-pulsed CO2 laser irradiation enhances enamel caries resistance without melting, with and without additional fluoride application. Seven groups of enamel, totaling 105 human enamel samples, were irradiated with 2 different carbon dioxide lasers with 2 different energy application systems (original versus spread beam; 9.3μm wavelength, pulse repetition rate 43Hz vs 100Hz, fluence ranges from 1.4 to 3.9J/cm2, pulse duration 3μs to 18μs). The laboratory pH-cycling was performed with or without additional fluoride, followed by cross-sectional microhardness testing. To assess caries inhibition, the mean relative mineral loss delta Z (∆Z) was determined. To evaluate for melting, scanning electron microscopy (SEM) examinations were performed. For the non-laser control groups with additional fluoride use, the relative mineral loss (ΔZ, vol% × μm) ranged between 512 ± 292 and 809 ± 297 (mean ± SD). ΔZ for the laser-irradiated samples with fluoride use ranged between 186 ± 214 and 374 ± 191, averaging a 58% ± 6% mineral loss reduction (ANOVA, P < 0.01 to P < 0.0001). For the non-laser-treated controls without additional fluoride, the mineral loss increased (ΔZ 914 ± 422 to 1224 ± 736). In contrast, the ΔZ for the laser-treated groups without additional fluoride ranged between 463 ± 190 and 594 ± 272 (P < 0.01 to P < 0.001) indicative of 50% ± 2% average reduction in mineral loss. Enhanced caries resistance was achieved by all applied fluences. Using the spread beam resulted in enhanced resistance without enamel melting as seen by SEM. CO2 9.3-μm short-pulsed laser irradiation with both laser beam configurations resulted in highly significant reduction in enamel mineral loss. Modifying the beam to a more homogenous profile will allow enamel caries resistance even without apparent enamel melting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call