Abstract

Background Left ventricular wall motion assessment following acute myocardial infarction (AMI) allows prediction of functional recovery. Current methods are based upon visual assessment, with inherent operator variability. CMR myocardial feature tracking (CMR-FT) is a recently introduced technique for tissue voxel motion tracking on standard steady-state free precession (SSFP) images to derive circumferential and radial myocardial mechanics. We sought to determine whether CMR-FT could be used as a quantitative measure of wall motion assessment and predict recovery in function following AMI. Methods Patients presenting with non-ST elevation myocardial infarction (NSTEMI) were studied using a 3 Tesla Phillips Achieva system with Multi-transmit ® technology and a 32-channel receiver coil, immediately prior to, and 3-months following, percutaneous coronary revascularization (PCI). Cine images were acquired using a SSFP cine technique, with analysis performed on the left-ventricular (LV) short-axis stack, covering the LV from apex to base. The acquisition pulse sequence provided a typical spatial resolution of 1.8 x 1.8 x 8 mm with a 2mm inter-slice gap and a temporal resolution of 50 frames per second. A 5-point wall motion scoring system was used to determine regional wall motion abnormalities (RWMA), with derivation of an indexed wall motion score (WMSI) specific to the region of infarction, according to the AHA 16-segment model. Myocardial strain parameters were derived following automated endo- and epi-cardial wall motion tracking of the SSFP cine short axis stack using dedicated software (Tomtec™, Germany). Pre-PCI LV short axis circumferential (Ecc) and radial (Err) peak strains were related to WMSI using a Pearson correlation analysis. Visual and quantitative analyses were performed by two blinded reviewers.

Highlights

  • Left ventricular wall motion assessment following acute myocardial infarction (AMI) allows prediction of functional recovery

  • Patients presenting with non-ST elevation myocardial infarction (NSTEMI) were studied using a 3 Tesla Phillips Achieva system with Multi-transmit® technology and a 32-channel receiver coil, immediately prior to, and 3-months following, percutaneous coronary revascularization (PCI)

  • Pre-PCI CMR myocardial feature tracking (CMR-FT) strain parameters were derived in all cases

Read more

Summary

Open Access

Kalpa De Silva1*, Asela Bandara, Andreas Schuster, Pablo Lamata, Roy Jogiya, Shazia T Hussain, Kaleab N Asrress, Nic Smith, Michael Marber, Eike Nagel, Simon Redwood, Divaka Perera, Sven Plein. From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background
Methods
Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.