Abstract

BackgroundCardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. The importance of left atrial (LA) deformation assessment is increasingly recognized and can be assessed with echocardiographic speckle tracking. However atrial deformation quantification has never previously been demonstrated with CMR. We sought to determine the feasibility and reproducibility of CMR-FT for quantitative derivation of LA strain and strain rate (SR) myocardial mechanics.Methods10 healthy volunteers, 10 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with heart failure and preserved ejection fraction (HFpEF) were studied at 1.5 Tesla. LA longitudinal strain and SR parameters were derived from SSFP cine images using dedicated CMR-FT software (2D CPA MR, TomTec, Germany). LA performance was analyzed using 4- and 2-chamber views including LA reservoir function (total strain [?s], peak positive SR [SRs]), LA conduit function (passive strain [?e], peak early negative SR [SRe]) and LA booster pump function (active strain [?a], late peak negative SR [SRa]).ResultsIn all subjects LA strain and SR parameters could be derived from SSFP images. There was impaired LA reservoir function in HCM and HFpEF (?s [%]: HCM 22.1?±?5.5, HFpEF 16.3?±?5.8, Controls 29.1?±?5.3, p?<?0.01; SRs [s?1]: HCM 0.9?±?0.2, HFpEF 0.8?±?0.3, Controls 1.1?±?0.2, p?<?0.05) and impaired LA conduit function as compared to healthy controls (?e [%]: HCM 10.4?±?3.9, HFpEF 11.9?±?4.0, Controls 21.3?±?5.1, p?<?0.001; SRe [s?1]: HCM ?0.5?±?0.2, HFpEF ?0.6?±?0.1, Controls ?1.0?±?0.3, p?<?0.01). LA booster pump function was increased in HCM while decreased in HFpEF (?a [%]: HCM 11.7?±?4.0, HFpEF 4.5?±?2.9, Controls 7.8?±?2.5, p?<?0.01; SRa [s?1]: HCM ?1.2?±?0.4, HFpEF ?0.5?±?0.2, Controls ?0.9?±?0.3, p?<?0.01). Observer variability was excellent for all strain and SR parameters on an intra- and inter-observer level as determined by Bland-Altman, coefficient of variation and intraclass correlation coefficient analyses.ConclusionsCMR-FT based atrial performance analysis reliably quantifies LA longitudinal strain and SR from standard SSFP cine images and discriminates between patients with impaired left ventricular relaxation and healthy controls. CMR-FT derived atrial deformation quantification seems a promising novel approach for the study of atrial performance and physiology in health and disease states.

Highlights

  • Cardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation

  • The study protocol was approved by the institutional review board. 10 subjects who met the conditions for heart failure and preserved ejection fraction (HFpEF) according to current consensus statements [10] (presence of signs or symptoms of congestive heart failure, presence of preserved left ventricular (LV) systolic function and echocardiographic evidence of diastolic LV dysfunction), 10 subjects with hypertrophic cardiomyopathy (HCM) and 10 healthy controls were recruited after written informed consent was obtained

  • Feasibility of left atrial CMR-FT LA CMR-FT was successfully performed in all subjects

Read more

Summary

Introduction

Cardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. Left atrial (LA) function is increasingly recognized to have an incremental role in determining prognosis and risk stratification in different states of disease – especially in those that are associated with ventricular diastolic dysfunction. Echocardiographic speckle tracking has proved to be a feasible and reproducible technique to evaluate LA longitudinal strain and strain rate (SR) [2]. CMR feature tracking (CMR-FT) – a technique analogous to echocardiographic speckle tracking – represents a novel approach to assess myocardial deformation directly from standard steady-state free precession (SSFP) cine CMR images and does not require additional tagging sequence acquisitions [4,5].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call