Abstract
The bidirectional interactions between brain and heart through autonomic nervous system is the prime focus of neuro-cardiology community. The computer models designed to analyze brain and heart signals are either complex in terms of molecular and cellular interactions or not capable of representing the complex ion channel dynamics. Therefore, scientists are unable to extract the overall behavior of organs by electrical response of heterogeneous cells of brain and heart. In this study, a unified model of excitable cells is proposed that can be modulated by adrenergic features. By implementing the proposed model, a network of one thousand sparsely coupled cardio-neural network is simulated. The major findings of study include i. cardiac heterogeneity in electrical behavior of cardiac myocytes is the prime factor of heart rate variability ii. Brain-heart interplay through electrical pulses holds the necessary information of brain and heart signals that can be analyzed through spiking neural networks iii. Heart rate variability can be predicted and monitored by spiking neural networks from electrophysiological recordings of brain and heart iv. Heart rate variability related to tachycardia and bradycardia depends upon the polarization protocols of cardiac myocytes during plateau phase of action potential. This study provides the modeling and simulation phase of brain-heart interface to predict the morbidity at early stages. The recent advancements in nano-electronics will make is possible to develop brain-heart interface as nano-chip to deploy in subject to stimulate the brain-heart interplay through electrophysiological signals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have