Abstract

The artificial graphite materials were prepared by carbonizing coal tar pitch using two methods, namely, one- and two-step processes, and all sintered samples were graphitized at 2800 °C. Effects of different heat treatments on the performance of the samples were characterized by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, Brunauer–Emmett–Teller, electrochemical impedance spectroscopy (EIS), particle size analysis, polarized light microscopy, and charge–discharge measurements. All samples show a typical graphite crystalline structure; moreover, the degree of graphitization (g factor) and crystallite size along the c-axis (L c ) were calculated from (002) peak. The polarized light microscopy indicates that the coke with carbonization at 700 °C has an obvious wide domain (D) optical structure, while that with two-step sintering at 400 and 700 °C has a mixed optical structures of wide D, flow domains, and mosaics. TEM analysis revealed a number of irregular graphene layer images which are caused by the defects of graphite. EIS shows that the sample carbonized by two-step has a larger diffusion coefficient than the sample carbonized at 700 °C by one step. Higher carbonization temperature leads to better cycle performance as the temperature increasing from 500 to 700 °C in the one-step route. Specifically, the charge (Li+ extraction) capacity at the 50th cycle increases from 318 mA h g−1 to 357 mA h g−1. The results show that the rate performance of the artificial graphite is improved with the addition of the presintering at 400 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.