Abstract

A unique sandwich-structured C/Ge/graphene composite with germanium nanoparticles trapped between graphene sheets is prepared by a microwave-assisted solvothermal reaction followed by carbon coating and thermal reduction. The graphene sheets are found to be effective in hindering the growth and aggregation of GeO2 nanoparticles. More importantly, the graphene sheets, coupled with the carbon coating, can buffer the volume changes of germanium in electrochemical lithium reactions. The unique sandwich structure features a highly conductive network of carbon, which can improve both the conductivity and the structural stability of the electrode material, and exemplifies a promising strategy for the development of new high performance electrode materials for lithium ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.