Abstract

The authors explore the development of paper-based electronics using carbon-based composites with a biodegradable matrix based on ethyl cellulose and dibasic ester solvent. The main focus is on screen-printing techniques for creating flexible, eco-friendly electronic devices. This research evaluates the printability with the rheological measurements, electrical properties, flexibility, and adhesion of these composites, considering various compositions, including graphene, graphite, and carbon black. The study finds that certain compositions offer sheet resistance below 1 kΩ/sq and good adhesion to paper substrates with just one layer of screen printing, demonstrating the potential for commercial applications, such as single-use electronics, flexible heaters, etc. The study also shows the impact of cyclic bending on the electrical parameters of the prepared layers. This research emphasizes the importance of the biodegradability of the matrix, contributing to the field of sustainable electronics. Overall, this study provides insights into developing environmentally friendly, flexible electronic components, highlighting the role of biodegradable materials in this evolving industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.