Abstract

The semiconductor-insulator heterostructure, characterized by outstanding economic-efficiency and catalytic activity, represents a promising photocatalyst for practical pollutants degradation. However, achieving energy band matching between semiconductors and insulators remains a challenge. In this study, we meticulously designed and synthesized a band-matched semiconductor-insulator photocatalysts (AgI-BaCO3), leveraging the in-situ nucleation of ultrafine AgI nanoparticles on BaCO3 surface. The finely crafted heterostructure notably enhanced degradation efficiency of tetracycline over both pure AgI and BaCO3, demonstrating a remarkable pseudo-first-order kinetic rate constant that surpassed them by 27.2 and 33.5 times, respectively. The density functional theory calculations uncovered that the intense covalent interaction between AgI and BaCO3 established a specific channel for interfacial charge carriers. The generated CO3·- radicals as the main active species markedly expedited the removal of antibiotics. Furthermore, the catalysts demonstrated robust activity in real wastewater and surface water. This work supplies a novel reference for constructing insulator-based photocatalysts and elucidates its potential application in actual aquatic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.