Abstract

The integration of GaN on Si as large scale substrates still faces many hurdles. Besides the large difference in the lattice constant and the high thermal mismatch existing between GaN and Si, spiral hillock growth phenomena are common problems in the development of thick GaN layers. In this work, hexagonal hillocks were observed on GaN/AlGaN high-electron-mobility transistor heterostructures grown on Si(111) by metal-organic chemical vapor deposition. The presence of these morphological and structural defects is attributed to the presence of localized contamination at the AlN/Si interface. These carbon-based defects cause highly defective regions in the AlN seed layer, which propagate through all the AlGaN buffer layers inducing the formation of V-shaped pits at the AlGaN interfaces. In hillock regions of the wafers, Raman spectroscopy indicates disturbed two-dimensional electron gas characteristics resulting from GaN/AlGaN interface roughness and a decreased amount of free carriers in the potential well. Energy-dispersive x-ray spectroscopy reveals Ga accumulation inside the V-pits and in nanopipes below, which is responsible for defective areas and the increased GaN growth rate resulting in hillock formation. Photoluminescence measurements confirm the presence of Ga-rich material reducing the inherent gallium vacancy concentration. Here, the reduced amount of Ga-vacancies acting as a shallow acceptor suppresses the ultraviolet luminescence band from donor–acceptor pair transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.