Abstract

Excellent photocatalysts are highly desirable for clean energy and pollutant treatment. Carbon dots (CDs)-based composite photocatalysts have been widely studied and utilized in catalytic fields. However, the preparation of the photocatalysts with high catalytic activity still faces a great challenge. Herein, white-light-driven CDs-based porous europium micro-networks (CDs@P-Eu-MNs) composite photocatalysts are prepared by a facile in-situ growth strategy. CDs can affect the morphology and produce a large number of porous structures of CDs@P-Eu-MNs. Importantly, the introduction of CDs not only increases the light absorption, but also promotes the separation of photogenerated charge carriers, and thus improve photocatalytic performance of CDs@P-Eu-MNs composites. CDs@P-Eu-MNs show the highest photocurrent density, which can be used for the highly-efficient photodegradation of rhodamine 6G dyes with almost 95% degradation rate under low power white light (20 W) without any radical generating agents such as H2O2. Therefore, this new and efficient CDs@P-Eu-MNs photocatalyst will have a great application prospect in water pollution treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.