Abstract
A comprehensive study of air–sea interactions focused on improving the quantification of CO2 fluxes and gas transfer velocities was performed within a large open ocean CO2 sink region in the North Atlantic. This study, GasEx-98, included shipboard measurements of direct covariance CO2 fluxes, atmospheric CO2 profiles, atmospheric DMS profiles, water column mass balances of CO2, and measurements of deliberate SF6–3He tracers, along with air–sea momentum, heat, and water vapor fluxes. The large air–sea differences in partial pressure of CO2 caused by a springtime algal bloom provided high signals for accurate CO2 flux measurements. Measurements were performed over a wind speed range of 1–16 m s−1 during the three-week process study. This first comparison between the novel air-side and more conventional water column measurements of air–sea gas transfer show a general agreement between independent air–sea gas flux techniques. These new advances in open ocean air–sea gas flux measurements demonstrate the progress in the ability to quantify air–sea CO2 fluxes on short time scales. This capability will help improve the understanding of processes controlling the air–sea fluxes, which in turn will improve our ability to make regional and global CO2 flux estimates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have