Abstract

PurposeThe purpose of this paper is to find out the best method for forecasting European Union Allowance (EUA) returns and determine its price determinants. The previous studies in this area have focused on a particular subset of EUA data and do not take care of the multicollinearities. The authors take EUA data from all three phases and the continuous series, adopt the principal component analysis (PCA) to eliminate multicollinearities and fit seven different homoscedastic models for a comprehensive analysis.Design/methodology/approachPCA is adopted to extract independent factors. Seven different linear regression and auto regressive integrated moving average (ARIMA) models are employed for forecasting EUA returns and isolating their price determinants. The seven models are then compared and the one with minimum (root mean square error is adjudged as the best model.FindingsThe best model for forecasting the EUA returns of all three phases is dynamic linear regression with lagged predictors and that for forecasting EUA continuous series is ARIMA errors. The latent factors such as switch to gas (STG) and clean spread (capturing the effects of the clean dark spread, clean spark spread, switching price and natural gas price), National Allocation Plan announcements events, energy variables, German Stock Exchange index and extreme temperature events have been isolated as the price determinants of EUA returns.Practical implicationsThe current study contributes to effective carbon management by providing a quantitative framework for analyzing cap-and-trade schemes.Originality/valueThis study differs from earlier studies mainly in three aspects. First, instead of focusing on a particular subset of EUA data, it comprehensively analyses the data of all the three phases of EUA along with the EUA continuous series. Second, it expressly adopts PCA to eliminate multicollinearities, thereby reducing the error variance. Finally, it evaluates both linear and non-linear homoscedastic models incorporating lags of predictor variables to isolate the price determinants of EUA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call