Abstract

We describe a novel approach for the synthesis of carbon coated Li4Ti5O12 (Li4Ti5O12/C) nanorods for high rate lithium ion batteries. The carbon coated TiO2 nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO2 powder is immersed in KOH sulotion and subsequently transforms into Li4Ti5O12/C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li4Ti5O12, one-dimensional (1D) Li4Ti5O12/C nanostructures show much better rate capability and cycling stability. The 1D Li4Ti5O12/C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.