Abstract
The capacity of large-capacity steel shell batteries in an energy storage power station will attenuate during long-term operation, resulting in reduced working efficiency of the energy storage power station. Therefore, it is necessary to predict the battery capacity of the energy storage power station and timely replace batteries with low-capacity batteries. In this paper, a large-capacity steel shell battery pack used in an energy storage power station is designed and assembled in the laboratory, then we obtain the experimental data of the battery pack during the cycle charging and discharging process. Finally, we propose a battery capacity prediction method based on DNN and RNN in deep learning.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have