Abstract

Although multimodal remote sensing data analysis can strongly improve the characterization of physical phenomena on Earth's surface, nonidealities and estimation imperfections between records and investigation models can limit its actual information extraction ability. In this article, we aim at predicting the maximum information extraction that can be reached when analyzing a given data set. By means of an asymptotic information theory-based approach, we investigate the reliability and accuracy that can be achieved under optimal conditions for multimodal analysis as a function of data statistics and parameters that characterize the multimodal scenario to be addressed. Our approach leads to the definition of two indices that can be easily computed before the actual processing takes place. Moreover, we report in this article how they can be used for operational use in terms of image selection in order to maximize the robustness of the multimodal analysis, as well as to properly design data collection campaigns for understanding and quantifying physical phenomena. Experimental results show the consistency of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.